Fault detection analysis using data mining techniques for a cluster of smart office buildings
نویسندگان
چکیده
There is an increasing need for automated fault detection tools in buildings. The total energy request in buildings can be significantly reduced by detecting abnormal consumption effectively. Numerous models are used to tackle this problem but either they are very complex and mostly applicable to components level, or they cannot be adopted for different buildings and equipment. In this study a simplified approach to automatically detect anomalies in building energy consumption based on actual recorded data of active electrical power for lighting and total active electrical power of a cluster of eight buildings is presented. The proposed methodology uses statistical pattern recognition techniques and artificial neural ensembling networks coupled with outliers detection methods for fault detection. The results show the usefulness of this data analysis approach in automatic fault detection by reducing the number of false anomalies. The method allows to identify patterns of faults occurring in a cluster of bindings; in this way the energy consumption can be further optimized also through the building management staff by informing occupants of their energy usage and educating them to be proactive in their energy consumption. Finally, in the context of smart buildings, the common detected outliers in the cluster of buildings demonstrate that the management of a smart district can be operated with the whole buildings cluster
منابع مشابه
An Optimization K-Modes Clustering Algorithm with Elephant Herding Optimization Algorithm for Crime Clustering
The detection and prevention of crime, in the past few decades, required several years of research and analysis. However, today, thanks to smart systems based on data mining techniques, it is possible to detect and prevent crime in a considerably less time. Classification and clustering-based smart techniques can classify and cluster the crime-related samples. The most important factor in the c...
متن کاملIdentification of Data Mining Techniques for Industrial Process Analysis and Control
This paper describes data mining techniques for application to industrial process analysis tasks. The aim was to identify data mining techniques that support exploratory analysis for performance assessment, process modelling, and fault diagnosis tasks that form the foundations of process control. The data mining technique base was investigated by conducting experiments using both synthetic and ...
متن کاملAn approach to fault detection and correction in design of systems using of Turbo codes
We present an approach to design of fault tolerant computing systems. In this paper, a technique is employed that enable the combination of several codes, in order to obtain flexibility in the design of error correcting codes. Code combining techniques are very effective, which one of these codes are turbo codes. The Algorithm-based fault tolerance techniques that to detect errors rely on the c...
متن کاملFault Detection Analysis of Building Energy Consumption Using Data Mining Techniques
This study describes three different data mining techniques for detecting abnormal lighting energy consumption using hourly recorded energy consumption and peak demand (maximum power) data. Two outliers’ detection methods are applied to each class and cluster for detecting abnormal consumption in the same data set. In each class and cluster with anomalous consumption the amount of variation fro...
متن کاملIntelligent Energy Management System for Office Buildings Using Traffic Control System
Rapid advances in new sciences and technologies result in high penetration of smart devices and services in daily life. In this regard, smart buildings are one of the prominent examples which have dramatically improved not only the accuracy and efficiency of buildings but also the speed of daily routines. Recently, integration of the cutting-edge technologies has been traversing from residentia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 42 شماره
صفحات -
تاریخ انتشار 2015